Minimum Bayes Risk Decoding for BLEU
نویسندگان
چکیده
We present a Minimum Bayes Risk (MBR) decoder for statistical machine translation. The approach aims to minimize the expected loss of translation errors with regard to the BLEU score. We show that MBR decoding on N -best lists leads to an improvement of translation quality. We report the performance of the MBR decoder on four different tasks: the TCSTAR EPPS Spanish-English task 2006, the NIST Chinese-English task 2005 and the GALE Arabic-English and Chinese-English task 2006. The absolute improvement of the BLEU score is between 0.2% for the TCSTAR task and 1.1% for the GALE ChineseEnglish task.
منابع مشابه
Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation
We present Minimum Bayes-Risk (MBR) decoding over translation lattices that compactly encode a huge number of translation hypotheses. We describe conditions on the loss function that will enable efficient implementation of MBR decoders on lattices. We introduce an approximation to the BLEU score (Papineni et al., 2001) that satisfies these conditions. The MBR decoding under this approximate BLE...
متن کاملImproving the Minimum Bayes’ Risk Combination of Machine Translation Systems
We investigate the problem of combining the outputs of different translation systems into a minimum Bayes’ risk consensus translation. We explore different risk formulations based on the BLEU score, and provide a dynamic programming decoding algorithm for each of them. In our experiments, these algorithms generated consensus translations with better risk, and more efficiently, than previous pro...
متن کاملMinimum Bayes-risk System Combination
We present minimum Bayes-risk system combination, a method that integrates consensus decoding and system combination into a unified multi-system minimum Bayes-risk (MBR) technique. Unlike other MBR methods that re-rank translations of a single SMT system, MBR system combination uses the MBR decision rule and a linear combination of the component systems’ probability distributions to search for ...
متن کاملA Unified Approach to Minimum Risk Training and Decoding
We present a unified approach to performing minimum risk training and minimum Bayes risk (MBR) decoding with BLEU in a phrase-based model. Key to our approach is the use of a Gibbs sampler that allows us to explore the entire probability distribution and maintain a strict probabilistic formulation across the pipeline. We also describe a new sampling algorithm called corpus sampling which allows...
متن کاملFast Consensus Decoding over Translation Forests
The minimum Bayes risk (MBR) decoding objective improves BLEU scores for machine translation output relative to the standard Viterbi objective of maximizing model score. However, MBR targeting BLEU is prohibitively slow to optimize over k-best lists for large k. In this paper, we introduce and analyze an alternative to MBR that is equally effective at improving performance, yet is asymptoticall...
متن کامل